
DSD Seminar 1

Itanium 2 MicroArchitecture and

Performance Tuning

Jin Guojun

Lawrence Berkeley National Laboratory

Apr. 30, 2004



DSD Seminar 2

Contents
• Chip Development Overview

• Itanium 2 Design

• Tuning Code for Increasing Itanium 2 Performance



DSD Seminar 3

Design and Determine CPU Speed
The thinner the die is, the lower the voltage and capacitor
will be

Volt

Time

1V

2.5V
low C High C



DSD Seminar 4

Chip Design

Further lower the voltage, static power will be higher than active power

µmµm

Germanium

Current



DSD Seminar 5

How Far the Silicon can GO
(1) Light speed is 300,000 Km/sec = 300mm/ns

10GHz clock —> 0.1 ns per clock cycle, light can travel 30mm per clock cycle

With 100GHz clock, light can travel only 3 mm per clock cycle

CPU PCI

Memory Banks
Main Board Floor Map

50 mm I/
O

 S
lo

t> 100 mm

Die is 6.38x6.38mm —> 28.3x28.3mm

Each way



DSD Seminar 6

CPU layout

ALU

13% gates for Logic

75% gates are memory (L2~L3 cache)

rest for controller



DSD Seminar 7

Memory Bandwidth
MemoryBandwidth ≠ BusClockRate × BusWidth

64-bit (8 bytes) 400 MHz memory system does NOT
produce 3.2 GB/s memory bandwidth:

This is because of cache, memory and I/O controllers

CPU
L1

Cache
L2

Cache
M

a
in

 B
u

s

Memory 400 MHz
Modules

3.2 GHz

Cache missing penalty = 8 CPU cycles

1 Cycle



DSD Seminar 8

Memory Subsystem

RAS

? CAS

CAS

Memory Module Cache

Memory Array

trcd

tAc

Data

Entire Row

(Row to Col. Delay)



DSD Seminar 9

Memory Bandwidth



DSD Seminar 10

Design Issues
• Hardware Design — microarchitecture

- EPIC instruction

- pipeline

- L1-L3 cache

- effort on compiler and hardware designs

• Software Design Issues —

• Protocol
- data structure

- subroutine argument and local data declaration

• Memory organization

• Vtune — Performance analyser



DSD Seminar 11

Architecture Strategy
• Parallelism

• Three instructions per bundle and two bundles per clock
• Allow compiler to exploit parallelism by eliminating static scheduling

• Branches Improvement

• Eliminate branches with predication
• Reduce the number of branch mispredicts by using branch hints
• Execute more than one branch per clock by multiway branch

• Register stack

• Reduce procedure call/return overhead

• Level 3 cache

• Increase relatively to processor cycle time



DSD Seminar 12

Instruction
• Format

• Group

• Parallelism

• Predication

• Pipeline



DSD Seminar 13

Instruction Format
[qp] mnemonic[.comp] dest = srcs

qp = qualifying predicate — 1 bit special register (64)
When qp is missing, it means true.

mnemonic = unique name identifying the instruction
comp = one or more completers
dest = destination operand(s)
srcs = source operand(s)

Example:

(p10) ld4.s r31 = [r3]



DSD Seminar 14

Instruction Group
Contiguous instructions that do not have dependencies
Terminated by an instruction group boundary “;;”

Example:

add r31 = r5, r6 ;; Group A

mov r4 = r31
add r2 = r8, r9 ;; Group B

mov r7 = r2
mov r15 = r27
mov r16 = r28
mov r17 = r29
add r3 = r11, r20 ;; Group C

mov r10 = r3 Group D



DSD Seminar 15

Parallelism
50-bit physical addressing, 64-bit virtual addressing
41-bit instruction
6 integer units
2 bundles per clock
Bundle — 128 bits

Instruction 1 Instruction 0Instruction 2 tmpl
127 87 86 46 45 5 4 0

Bundle 1 Bundle 2 Bundle 3 Bundle 4

Group A Group B Group C



DSD Seminar 16

Bundle Cont’d
Templates:

MII, MLX, MMI, MFI, MMF, MIB, MBB, BBB, MMB, MFB

MI_I, M_MI
MII_, MLX_, MMI_, etc.

M = Memory
I = Integer
A = Memory/Integer
F = Floating-point
L+X = Extended (Immediate data)
B = Branch
Example:

I I M 02
MI_I



DSD Seminar 17

Registers
• 128 general registers (64 bits + 1)

each GR is associated with an 1-bit CR for communication. e.g., if memory is
available, etc.

0-31 is the main register frame
32-127 is register sliding window

To avoid window overflow, deep procedure calls is
dis-encouraged

• 8 branch registers (64 bits)

• 128 floating point registers (82 bits)

• 64 predicate registers (1 bit)

• Instruction Pointer (IP) (64 bits)

• Application registers

• Performance monitoring data registers

• Processor identification registers (CPUID)



DSD Seminar 18

Branch and Pipeline
[qp] mnemonic[.comp] dest=srcs

• If [qp] is missing, it means true.

if (condition is true) ✓
here

else
somewhere-else

If (condition is False) ✘
somewhere-else

else
here



DSD Seminar 19

Branch and Predication
Non-predicated

if (a > b) ++c
else d = d*e + f

Predicated

pT, pF = compare (a>b)
if (pT) ++c
if (pF) d = d*e + f

Conditions and branches in a loop are hinted by
predication registers (via %).



DSD Seminar 20

Eight-Stage Pipeline
• Two-stage front end gets and formats instructions from L1-I cache to the

instruction streaming buffer

- Front end loads pipeline instruction buffer, which stages instructions
for back end

• Six-stage pipeline back end

- Expands the templates (EXP)

- Prepares registers for access by the instructions (REN)

- Loads data from registers to functional units (REG)

- EXE stage invokes instructions and routes output from single cycle
ALU’s back to REG stage as needed

- DET stage detects micropipeline stalls, exceptions and branch
mispredictions and flushes the pipeline

- WRB stage writes output of functional units to registers

This means that mis-predication will have at least 8 cycles penalty.



DSD Seminar 21

Cache
System Bus — 128 bits wide
200MHz / 400 MTx/s -> 6.4GB

L1 — 2X16KB 1 clock latency (64B lines — 8 words)
L2 — 256K 5 clock latency (128B lines — 16 words) [32GB MBW]
L3 — 6MB On die 14~17 clock latency (48GB/s bandwidth to L2 ???)

2GHz CPU <--> Memory clock ratio = 10
All cache missing, what is the memory delay penalty?

Do not allocate (static or dynamic) data array at multiple of 256Bytes!

L2 Unified Cache Bank: 16 banks cover 256 Bytes = 2 cache lines

line 1 of 8 line 2 of 8

line 3 of 8 line 4 of 8

line 5 of 8 line 6 of 8

line 7 of 8 line 8 of 8

b0 b15



DSD Seminar 22

Cache Access
• L2 data access controlled by 32 entry queue (OzQ — register line) and allows

out of order data return

- FP data loaded to FP register directly from L2

• Minimum integer latency is 5 cycles

• Minimum floating point latency is 6 cycles

• Latency is increased by

- Cache miss

- Bank conflicts cause OzQ cancels (measured to add 6 cycles)

- Multiple misses and misses to lines being updated will cause OzQ
recirculates (measured to add 16 cycles)

- only one data access is escalated to L3 and the system bus, the others
recirculate



DSD Seminar 23

Microbanchmarks
Example: Simple microbanchmark to measure cache
latencies

- Time two simple loops with and without loads and divide difference
by the iteration to yield the latency

Example:
cache access latency baseline
ld r29 = [r34], 128;; nop.m 0;;
mov r28 = r29 mov r28 = r29
br.ctop.sptk top_of_loop br.ctop.sptk top_of_loop

average 7.12 cycles average 3.02 cycles



DSD Seminar 24

Bandwidth Considerations
• Maximum front side bus bandwidth is 6.4 GB/s

• Program bandwidth (BW) required by loop

BW = Lines_per_iter x 128 bytes x 1GHz / cycles_per_iter
- Lines_per_iter mush include read and 2 * write output lines

• Setting the program BW < 6.4 GB/s determines minimum cycles per iteration

- Cycles_per_iter > Lines_per_iter x 128 / 6.4



DSD Seminar 25

Data Structure
struct my_data {

int md_I1,
md_I2,
md_I3;

short md_S1;
char md_C0,

md_Cpad[1]; // reserved space
char *md_Cp;
double md_D0;

};

struct m_data {
int md_I1;
short md_S1; // 2 bytes pad are inserted
char *md_Cp,

md_C0; // 7 bytes pad are inserted
double md_D0;
char md_C1; // 7 bytes tailing

} packets[8]; // total 320 bytes, not 144 (packed)



DSD Seminar 26

Compiler
Due to limited die’s space, hardware becomes simplified
and dumb. This requires compiler to be more smart, and
human error will affect performance.

Intel 8.x Compilers:
Optimization for Linux on Itanium Processor Family Systems



DSD Seminar 27

Optimization
POV-Ray software run time

1. make usegcc — 32s

2. make useicc — 26s
3. make useicc CF=”-O3” LF=”-O3” — 23s (HLO)
4. make useicc CF=”-tpp#” LF=”-tpp#” — 25s (HLO, # = 1,2)
5. make useicc CF=”-ipo” LF=”-ipo” — 24s (Interprocedural opt)

6. make useicc CF=”-prof_gen” LF=”-prof_gen” — 23s

7. make useicc CF=”-O3 -tpp2 -ipo -prof_use” LF=”...” — 17s



DSD Seminar 28

VTune ™ Performance Analyzer
Native Performance Analysis

• Intel® IA-32 Processors

- MS Windows (GUI + command line)

- Linux — command line only

• Itanium Family Processors

- Same as above

• For specific operating systems versions, see the release notes

Used for understanding where is the bottleneck of your
programs


